The Importance of Cardiac Output Monitoring in Paediatric Management

Dr Joe Brierley
Paediatric and Neonatal Intensive Care Units
Great Ormond St Hospital
London, UK
Cardiac function

- Systolic AND diastolic function

 - Systolic function

 - Diastolic function
 - rate and degree of ventricular relaxation
 - both active and passive components
Cardiac Function-Systolic

- **Systolic cardiac function**
 - interaction of four *interdependent* factors:
 - **Heart rate**
 - **Preload**
 - **Contractility**
 - **Afterload**

- Heart rate measurable
- Preload - invasive pressure - CVP/PA wedge
- Contractility and afterload - difficult (FS/conductance/SVR)
- ICU cardiac function - bedside cardiac output
Cardiac function

Adequacy of cardiac output and oxygen delivery

Global assessment
- MVO2
- lactate

Regional assessment
- capillary refill
- core-peripheral temperature gap
- splanchnic oxygen delivery-gastric tonometry
- secondary organ effects
 - renal/hepatic/neurological failure
Assessing circulatory disturbances

- Clinical estimate of cardiac output poor (1)

- ‘Clinicians substitute BP for flow’
 - no correlation between flow + pressure

- Plethora of methods to estimate CO
 - each potential for measurement errors
 - requirement for technical expertise may limit utility
 - degree of invasiveness required ⇒ incremental risk to pt

Caveat

n Flow without Hb + art’ sats - ?misleading

n Cellular viability depends
 • O2 delivery (CO X arterial oxygen content)
 • O2 extraction
 n As well as CO
Cardiac output

- Volume of blood ejected by heart per minute

- NB Interplay - HR preload contractility + afterload

- Manifestation of cardiac function measurable at bedside

- In children indexed to BSA-cardiac index
 - same “normal” value
 - 3.5–5.5 l/min/m² regardless age/size
Why Measure CO in ICU

- CVS one of commonest organ failures in PICU *Wilkinson*
- Other organ failure/support effects myocardial function
 - eg ventilation/CVVH
- Low flow state
 - high mortality in certain diseases *Mercier JC et al*
- Flow poorly estimated clinically *Tibby et al*
 - Hence titrate treatment against BP!
- Adequate organ perfusion pressure vital
 - BUT BP affected by CO and SVR

Wilkinson et al. Outcome of pediatric patients with MOSF. Crit Care Med 1986;14:271–4
Tibby et al Clinicians’ abilities to estimate CI in ventilated children and infants. Arch Dis Child 1997;77:516–18
When to measure CO

- Not all children in ICU vs children outside ICU
- Risk vs benefit
 - **Risk**: Patient selection
 - **Benefit**: Understand haemodynamics

Method used

- Shock states
- Congenital and acquired heart disease
- Multiple organ failure
- **Cardiopulmonary interactions** during mechanical ventilation

Also

- Research
- Monitoring effects of drugs eg anaesthetic agents
- ? Role in early goal therapy prior to ICU

Accuracy vital as ultimate aim to change therapy
When to measure CO in ICU

- Evidenced based medicine
 - CO not (yet) convincingly shown to improve outcome

- But same for many monitoring procedures
 - invasive arterial pressure
 - CVP measurement
 - blood gas analysis
 - pulse oximetry

- NB CVO2
 Anyone like to NOT know her cardiac output?
Flow more important than pressure!
Goal Therapy

Adjustments in:

<table>
<thead>
<tr>
<th>Modality</th>
<th>Gold standard</th>
<th>ICU manipulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-load</td>
<td>LVEDP</td>
<td>fluids/CVP</td>
</tr>
<tr>
<td>Systolic function</td>
<td>Contractility (conductance)</td>
<td>Inotropes</td>
</tr>
<tr>
<td>Diastolic function</td>
<td>Relaxation</td>
<td>(ino-)Dilators</td>
</tr>
<tr>
<td>Afterload</td>
<td>Ventriculo-arterial coupling -Ees/Ea</td>
<td>SVR</td>
</tr>
</tbody>
</table>

Aim to balance O2 delivery with O2 demand

- **End points**
 - Normalized MVO2
 - Arterial lactate
 - Base deficit
 - pH
MVO₂

- Good surrogate for cardiac index
 (assuming constant -O₂ consumption, Hb concentration, arterial O₂ saturation)

CVO₂

- Reasonable surrogate for MVO₂
 - Reinhart et al. Comparison of CV to MV O₂ sats during changes in O₂ supply/demand. Chest 1989;95:1216-21
Paediatric Sepsis

Manipulation other variables equally successful

Eg Cardiac output

Any of this valid in children

40 mL/kg in the first hour following ED presentation associated with: improved survival

Early Reversal of Pediatric-Neonatal Septic Shock by Community Physicians Is Associated With Improved Outcome

Each extra hour of shock: 2.3x risk of death
Ideal characteristics
-CO device

- Non-invasive
- Applicable to many patients
- Applicable over a wide range of flow
- Accurate (cf other techniques)
- Reproducible
- Easy to use
- Rapid data acquisition
- Cost effective
How to measure cardiac output

<table>
<thead>
<tr>
<th>Invasive</th>
<th>Non-Invasive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution techniques</td>
<td>Non-invasive Fick using CO2</td>
</tr>
<tr>
<td>Dye dilution</td>
<td>Bioimpedance</td>
</tr>
<tr>
<td>Pulmonary artery thermodilution</td>
<td>Echocardiography</td>
</tr>
<tr>
<td>Transpulmonary thermodilution</td>
<td>Trans-oesophageal doppler</td>
</tr>
<tr>
<td>Lithium dilution</td>
<td>Pulse contour analysis</td>
</tr>
<tr>
<td>Direct Fick</td>
<td>Supra-sternal/USCOM</td>
</tr>
</tbody>
</table>

- Fick
- Bioimpedance
- Echocardiography
- Trans-oesophageal doppler
- Pulse contour analysis
- Supra-sternal/USCOM
PA catheter

- Traditional ICU estimation CO
 - cold dextrose \Rightarrow Rt atrium \Rightarrow PA temp’ change (thermistor)
 - CO calculated - temperature time curve

- Disadvantages
 - technical limitations
 - catheter-related problems
 - Usually on ICU
 - skilled operator (1,2)

Measuring Cardiac Output

Invasive

Fick equation - ‘gold standard’

CO calculated →

- Art-Venous-O$_2$ content difference & O$_2$ consumption
 - O$_2$ consumption (spirometry) and O$_2$ content (ABG)
 - MVO$_2$ needs PA catheter

- technical skill -unfeasible as routine
- several devices use variants

Adolph Fick 1870
Measuring Cardiac Output - Invasive Fick principle with CO$_2$

- Total Re-breathing Cardiac Output

CO$_2$ not eliminated - exhaled CO$_2$ approaches MVCO$_2$
Et CO$_2$ - non-invasive estimate of PaCO2
"Upon the amount of blood that is thrown out by the heart during systole then, does the magnitude of the pulse-pressure in the aorta depend"

1904 Erlanger and Hooker

- Relation CO and arterial pulse contour
Pulse contour analysis
PiCCO

- Area under systolic portion of pulse pressure waveform
- Calibration - transpulmonary thermodilution
- 4-Fr arterial probe - so older children
- Now 1.3 Fr probe
<table>
<thead>
<tr>
<th>Transpulmonary Thermodilution</th>
<th>Continuous Pulse Contour Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpulmonary CO</td>
<td>Continuous Pulse Contour CO</td>
</tr>
<tr>
<td>Intrathoracic blood volume</td>
<td>ABP</td>
</tr>
<tr>
<td>Global end-diastolic volume</td>
<td>Heart Rate</td>
</tr>
<tr>
<td>Extravascular lung water</td>
<td>Stroke Volume</td>
</tr>
<tr>
<td>Pulmonary vascular permeability index</td>
<td>Stroke volume variation</td>
</tr>
<tr>
<td>Cardiac Function Index</td>
<td>SVR</td>
</tr>
<tr>
<td>Global Ejection Fraction</td>
<td>Index of left ventricular contractility</td>
</tr>
<tr>
<td></td>
<td>Pulse pressure variation</td>
</tr>
</tbody>
</table>
Pulse contour analysis
PulseCO [LiDCO, UK]

Frequency analysis
- aortic impedance
- aorta-radial transfer function
- aortic flow
- radial pressure

- Need radial arterial line
 + calibration - lithium dilution

- infants and children
Partial Rebreathing Cardiac Output
Indirect Fick (Non Invasive - NICO)

\[VCO_2 = CO \times (CvCO_2 - CaCO_2) \quad \text{But } CvCO_2 \text{ 'invasive'} \]

Assuming \(CvCO_2 + CO \) constant 3 mins

- \(VCO_2N - VCO_2R = CO \times (CaCO_2R - CaCO_2N) \)
- \(\rightarrow CO = (VCO_2N - VCO_2R)/(CaCO_2R - CaCO_2N) \)

Pulmonary shunt correction computed
Cardiac Output
Non-invasively - Doppler

- Suprasternal and pulmonary
- Transgastric
- Trans-oesophageal

Oesophageal Doppler CO
- described 1971, refined 1989
- validated in children

Technical basis for technique

Concept

flow in cylinder = CSA of cylinder X velocity of fluid in cylinder

For aortic blood flow

- movement of blood pulsatile and velocity changes with time

⇒ Velocity characterized by area under velocity-time curve between two points in time
Oesophageal Doppler

In ICU
Ideal characteristics - *continuous CO device*

- Non-invasive
- Automatic and non-operator dependent
- Accurate (compared to other techniques)
- Continuous, real time data display
- Easy to use
- No calibration required
- Cost effective
USCOM-suprasternal aortic + pulmonary

Vpk Trend 0.73
12 retrievals
Range of ages 6 months-12 years
Differing diagnosis

Results:
36 cardiac outputs performed
4 successful readings per case
Median time to obtain data 7 minutes
Cardiac index-low variability - across range of ages and mean cardiac index
When to measure CO with USCOM

- EARLY goal therapy AND RETRIEVAL
 - (-NB CvCO2 invasive in coagulopathic septic infant)

- ICU
 - USCOM
 - PORTABLE
 - ROBUST
 - Accurate in adults, paed study being done
The Future
Benefits of cardiac output

- Early warning monitoring
- Rational fluid and drug administration
- Decreased procedural complications
e.g. bolus injections/vascular access
- Use for CVS physiology in well children
- Smart resuscitation
 - ie Early Goal directed therapy
- Prospect of outcome modification
Questions